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Despite growth curves in pure culture, and despite statements in 
the literature that the limit for life is ~ -20ºC, I will show that it is 

worthwhile to search for living microbes in cold planets. 



  

Unusual route to invention
↓

AMANDA high-energy neutrino observatory ~1993
↓

Dust in glacial ice governs its optical properties ~1994
↓

Brainstorming for proposed NSF STC “Deep Ice” ~1998
↓   ↓

Microbes in veins in ice ~2000 Dust logger ~2001
 ↓ ↓

Biospectral logger (BSL)
↓

Discoveries?



  

Jumps in dust signal in 3054 m borehole (Greenland) ⇒ abrupt 
climate changes. Do microbes accompany dust and volcanic ash?

Kiloyears before 
present

Ca2+: proxy for dust

dust logger

δ18O



  

Technology Goal
• Construct biospectral logger (miniBSL) to fit into a 5-cm 

borehole; 224 nm laser; 6 notch filters + 1 ND filter; 7 PMTs; 
noninvasive

Science Goals
 • Log 300-m-deep borehole in glacial ice 8 km from S. Pole.

On Jan. 16,  N. Bramall  logged this borehole with a large BSL.

• With Peter Doran et al., log 19-m ice cover, microbial mats, and 
hypersaline water in Lake Vida, Antarctica.

• Scan ice cores at NICL ; do microbes correlate with climate 
changes, basal ice, volcanic ash, age and T of ice? Do they live in 

veins in ice?

• From fluorescence spectra, identify types, live/dead ratio, 
microhabitats,  water/ice ratio in subsurface,…



  

Microbial life on Earth “follows the water”

• Ice has microbes in interconnecting aqueous, µm-size 
veins (salt-rich on Mars; acid-rich on Europa)

• Permafrost has microbes on nm-thick films of unfrozen 
water at ice/grain surfaces.



  

Melting points of some aqueous eutectics



  

Direct evidence that
adapted microorganisms can 

exist and metabolize in a 
network of liquid veins at T 

down to -90ºC.

Fluorescing microbe
in a vein in sea ice at -15ºC
(K. Junge and J. Deming)
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  Temperature [ºC]

Water film 
thickness at 
grain/ice 
Interface 
depends on
temperature 
and rock 
type: clay 
minerals are 
best: high 
surface to 
volume

 basalt

bentonite

clay

clay
clay



  

Microbes live on mineral 
surfaces in permafrost and 
extract energy from the thin 

films that remain liquid even at 
low temperature.

• blue = DAPI-stained 
bacteria

• red = chlorophyll 
fluorescence

(Priscu et al.: ice-covered 
Lake Bonney, Antarctica) 

1 µm



  

GISP2 (Greenland) 3054 m core; silty ice in bottom 13 m

Clean
ice

3054.4 m



  

Increases in CH4 and CO2 

near bottom
of Greenland ice

core ⇒ microbes are 
metabolizing in ice.

C2H4O2+2O2→2CO2+2H2
O

4H2+CO2→CH4+2H2O

V. Miteva finds ~7 x 107 

cells/cm3 in deepest ice.

C. Tung (my undergrad) 
finds, on average, ~20 cells 

attached to each grain.

CO2

CH4



  

Our geochemical method for inferring 
metabolic rate of trapped, dormant microbes 

at low temperature:

µ = metabolic rate per cell in gC gC-1 h-1

µ  = Yj / nj mj t

Yj = metabolic yield of gas of type j;
nj, mj = conc. and mass of microbes producing j;

t = retention time of reactants



  

Todd Sowers

S. Abyzov

Petit et al.

Nitrifying bacteria
In Vostok ice



  

SEM pictures of bacteria from Vostok ice core at 3593 m



  

Microbe metabolism
• Activation energies
~110 kJ/mole

• Rates scale as 106:
103:1

• Metabolism down to 
-40ºC; no minimum

• In Vostok ice at -40ºC, 
1 turnover per 108 yr!

• In “survival” mode, 
metabolic rate for repair 
≈ spontaneous damage 
rate.

sandstone
sediment

ocean
sediment GISP2

deep ice

Vostok
ice



  

Nathan Bramall and Ryan Bay with BSL-1 at Lake Tahoe. Bramall 
logged a South Pole borehole with a bigger version on Jan. 16.



  Wavelength [nm]          

Log of Lake Tahoe;
BSL-1 excited at 

370 nm

Fluorescence from
Chl-a and NADH 
→

NADH fluorescence 
spectra of known 
microbes compared 
with Tahoe 
microbes →

450 500

0 100 200



  

MiniBSL is a discovery instrument: design sensitivity ≈1 cell/cm3.

At 224 nm, microbial fluorescence dominates over mineral 
fluorescence. Examples:

• Chl-a ⇒ photosynthesis
• Trp ⇒ all cells
• Tyr ⇒ spore coats
• F420 ⇒ a coenzyme in methanogens and haloarchaea
• Guanosine/adenosine in acid veins ⇒ live/dead test
• PAHs

To detect other biomolecules, use other wavelengths
• Fulvic and humic acids,…
• Bacteriorhodopsin ⇒ in some haloarchaea
• NADH, flavins,…

With ND filter, scattering w/o fluorescence ⇒ dust, volcanic ash,…



  

volcanic ash

illit
e

“Mars” soil

McM. soil

Microbial
Fluorescence
λexc = 230 nm

Mineral
fluorescence
λexc = 230 
nm

Mineral
fluorescence
λexc = 370 nm

Microbial
fluorescence
λexc = 370 nm



  

Focuses on borehole wall
↓

Focuses inside the ice
↓

miniBSL



  

Future potential applications

Beacon Valley (Antarctica): ~8 Myr-old permafrost/ice

Borehole in deep mine (anaerobes on walls)

Subglacial Lake Vostok (exotic microbes?)

Mars subsurface?

Warm diapirs in Europa’s ice?



  

MiniBSL could search in a 
Martian borehole for 
biomolecules in ice, 

permafrost, or rock and for 
dust and ash in clean ice.

 Below the impact-
gardened depth (3-14 m), 

organic molecules and 
even microbial life might 

avoid oxidants and surface 
irradiation.



  

Does microbial
life exist in
veins within

warm diapirs in 
Europan ice?


